AI and Machine Learning Glossary
AI and Machine Learning Index
Hereโs an AI and Machine Learning Glossary formatted in Markdown, with ๐น for beginner (need to know) and ๐ธ for advanced (nice to know) terms.
This glossary aims to explain the concepts below in a simple, easy-to-understand way, even for someone new to the field. Each term includes a definition, an "Explain Like I'm Five" section, and links for further learning.
Core Concepts
- Artificial Intelligence ๐น
- Machine Learning ๐น
- Supervised Learning ๐น
- Unsupervised Learning ๐น
- Reinforcement Learning ๐ธ
- Deep Learning ๐น
- Neural Networks ๐น
- Algorithm ๐น
Common Algorithms & Models
- Linear Regression ๐น
- Regression ๐น
- Classification ๐น
- Decision Tree ๐น
- Random Forest ๐น
- Support Vector Machine (SVM) ๐ธ
- K-Means Clustering ๐น
- Clustering ๐น
- Generative Adversarial Network (GAN) ๐ธ
- Transformer Model ๐น
- Large Language Model (LLM) ๐น
Training and Optimization
- Deterministic Quoting ๐ธ
- Training Data ๐น
- Test Data ๐น
- Feature Engineering ๐น
- Overfitting and Underfitting ๐น
- Bias and Variance Tradeoff ๐น
- Bias ๐น
- Loss Function ๐ธ
- Backpropagation ๐ธ
- Gradient Descent ๐ธ
- Hyperparameters ๐ธ
- Activation Function ๐ธ
Evaluation & Metrics
- Accuracy ๐น
- Precision & Recall ๐น
- F1 Score ๐น
- Confusion Matrix ๐ธ
- ROC-AUC Curve ๐ธ
Ethics & Challenges
- Bias in AI ๐น
- Explainable AI (XAI) ๐ธ
- Fairness ๐น
- Hallucinations in AI ๐น
Tools & Frameworks
- TensorFlow ๐ธ
- PyTorch ๐ธ
- Scikit-learn ๐ธ
Advanced Topics
- Natural Language Processing (NLP) ๐น
- Computer Vision ๐น
- Transfer Learning ๐ธ
- Diffusion Models ๐ธ